Nevada Copper readies to resume production in Q3
Nevada Copper (TSX: NCU) is progressing towards the restart of concentrate production in Q3 2020, the owner of the Pumpkin Hollow copper project announced in an update Tuesday.
Production at the underground mine was temporarily halted in early April due to the strict travel and workplace restrictions imposed by the state of Nevada to curb the spread of covid-19.
As part of its restart preparations and accelerated mine development plan, Nevada Copper has completed vertical development of the main shaft to a final depth of 2,131 feet, and is continuing lateral development to increase ore stockpile ahead of the process plant restart. Phased remobilization of plant personnel has also begun, the company said.
Meanwhile, Nevada Copper has recently staked an additional land package covering approximately 680 acres contiguous to the Pumpkin Hollow property and along the eastern boundary of the Tedeboy area.
Review of historical aero-magnetic survey data has identified a magnetic high that coincides with the identification of anomalous copper mineralization at surface with grab samples returning copper grades, confirming the prospectivity of this newly acquired property.
Shareholder Pala Investments has provided bonding indemnity support to the company with a short-term loan of $5.5 million, providing cash if needed for the development and restart of operations at Pumpkin Hollow.
Shares of Nevada Copper opened the session 10% higher on the TSX. The Vancouver-based copper producer has a market capitalization of C$155.7 million.
Ball Mill Liner Material Selection
Different crushed material, different working conditions need different material liners to suit. Also, the coarse grinding compartment and fine grinding compartment need different material liners.
H&G Machinery supplies the following material to cast your ball mill liner:
Manganese Steel
The manganese content of the high manganese steel ball mill lining plate is generally 11-14%, and the carbon content is generally 0.90-1.50%, most of which are above 1.0%. At low impact loads, the hardness can reach HB300-400. At high impact loads, the hardness can reach HB500-800. Depending on the impact load, the depth of the hardened layer can reach 10-20mm. The hardened layer with high hardness can resist impact and reduce abrasive wear. High manganese steel has excellent anti-wear performance under the condition of strong impact abrasive wear, so it is often used in wear-resistant parts of mining, construction materials, thermal power, and other mechanical equipment. Under the conditions of low impact conditions, high manganese steel cannot exert the characteristics of the material because the work hardening effect is not obvious.
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
Mn14 Mill Liner | 0.9-1.5 | 0.3-1.0 | 11-14 | 0-2.5 | 0-0.5 | ≤0.05 | ≤0.06 | ≤0.06 |
Mn18 Mill Liner | 1.0-1.5 | 0.3-1.0 | 16-19 | 0-2.5 | 0-0.5 | ≤0.05 | ≤0.06 | ≤0.06 |
Mechanical properties and metallographic structure
Name | Surface Hardness(HB) | Impact value Ak(J/cm2) | Microstructure |
Mn14 Mill Liner | ≤240 | ≥100 | A+C |
Mn18 Mill Liner | ≤260 | ≥150 | A+C |
C -Carbide | Carbide A-Retained austenite | Austenite |
Product specification
Size | Hole Dia.(mm) | Liner Length(mm) | ||
≤40 | ≥40 | ≤250 | ≥250 | |
Tolerance | +20 | +30 | +2 | +3 |
Chrome Alloy Steel
Chromium alloy cast iron is divided into high chromium alloy cast iron (chromium content 8-26% carbon content 2.0-3.6%), medium chromium alloy cast iron (chromium content 4-6%, carbon content 2.0-3.2%), low chromium Three types of alloy cast iron (chromium content 1-3%, carbon content 2.1-3.6%). Its remarkable feature is that the microhardness of M7C3 eutectic carbide is HV1300-1800, which is distributed in the form of a broken network and isolated on the martensite (the hardest structure in the metal matrix) matrix, reducing the cleavage effect on the matrix. Therefore, the high-chromium alloy liner has high strength, ball mill toughness, and high wear resistance, and its performance represents the highest level of current metal wear-resistant materials.
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
High Chrome Alloy Liner | 2.0-3.6 | 0-1.0 | 0-2.0 | 8-26 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Middle Chrome Alloy Liner | 2.0-3.3 | 0-1.2 | 0-2.0 | 4-8 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Low Chrome Alloy Liner | 2.1-3.6 | 0-1.5 | 0-2.0 | 1-3 | 0-1.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Mechanical properties and metallographic structure
Name | Surface(HRC) Ak(J/cm2) | Microstructure | ||||
High Chrome Alloy Liner | ≥58 | ≥3.5 | M+C+A | |||
Middle Chrome Alloy Liner | ≥48 | ≥10 | M+C | |||
Low Chrome Alloy Liner | ≥45 | ≥15 | M+C+P | |||
M- Martensite | C – Carbide | A-Austenite | P-Pearlite |
Product specification
Size | Hole Dia.(mm) Liner Length(mm) | |||
≤40 | ≥40 | ≤250 | ≥250 | |
Tolerance | +20 | +30 | +2 | +3 |
Cr-Mo Alloy Steel
H&G Machinery uses Cr-Mo alloy steel to cast ball mill liner. This material based on Australia standard, (AS2074 Standard L2B, and AS2074 Standard L2C)it’s provides superior impact and wear resistance in all semi-autogenous milling applications.
Chemical Composition
Code | Chemical Elements(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
L2B | 0.6-0.9 | 0.4-0.7 | 0.6-1.0 | 1.8-2.1 | 0.2-0.4 | 0.3-0.5 | ≤0.04 | ≤0.06 |
L2C | 0.3-0.45 | 0.4-0.7 | 1.3-1.6 | 2.5-3.2 | 0.6-0.8 | 0.3-0.5 | ≤0.04 | ≤0.06 |
Physical Property & Microstructure
Code | Hardness(HB) | Ak(J/cm2) | Microstructure |
L2B | 325-375 | ≥50 | P |
L2C | 350-400 | ≥75 | M |
M-Martensite, C-Carbide, A-Austenite, P-Pearlite |
Ni-hard Steel
Ni-Hard is a white cast iron, alloyed with nickel and chromium suitable for low impact, sliding abrasion for both wet and dry applications. Ni-Hard is an extremely wear-resistant material, cast in forms and shapes which are ideal for use in abrasive and wear environments and applications.
Chemical Composition
Name | C | Si | Mn | Ni | Cr | S | P | Mo | Hardness |
Ni-Hard AS2027 Gr Ni Cr 1-550 | 3.2-3.6 | 0.3-0.8 | 0.2-0.8 | 3.0-5.0 | 1.5-3.0 | ≤0.12 | ≤0.15 | ≤0.5 | 550-600HBN |
Ni-Hard AS2027 Gr Ni Cr 2-550 | 2.8-3.2 | 0.3-0.8 | 0.2-0.8 | 3.0-5.0 | 1.5-3.0 | ≤0.12 | ≤0.15 | ≤0.5 | 500-550HBN |
Ni-Hard AS2027 Gr Ni Cr 2-550 | 3.2-3.6 | 1.5-2.2 | 0.2-0.8 | 4.0-5.5 | 8.0-10.0 | ≤0.12 | ≤0.15 | ≤0.5 | 630-670HBN |
White Iron Steel
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
White Iron Steel Liner | 2.0-3.3 | 0-0.8 | ≤2.0 | 12-26 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Physical Property & Microstructure
Name | HRC | Ak(J/cm2) | Microstructure |
White Iron Steel Liner | ≥58 | ≥3.5 | M+C+A |
M-Martensite C- Carbide A-Austenite |
If you have a special material inquiry, please contact our engineer to service you!
Nick Sun NICK@XZHUAGANG.COM
Post time: Jun-19-2020