Iron ore powers past $100 as supply woes meet robust demand
Iron-ore surged past $100/t as supply woes in Brazil coincide with sustained, robust demand in top steel producer China.
Benchmark spot prices climbed to $101.05 on Friday as Brazil, the world’s second-largest exporter, saw a surge in coronavirus infections, stoking worries that the pandemic may curb local supply. In April, miner Vale cut its annual shipment guidance on bad weather and the virus’s impact on operations. Meanwhile, port stockpiles of iron-ore in China have continued to decline.
The industrial staple has prospered in 2020 even as the coronavirus pandemic hammered industrial activity in many economies, although Bloomberg Intelligence has been among observers warning that market may flip to a surplus in the second half. In addition to Vale, the higher prices will bolster returns at BHP Group, Rio Tinto Group and Fortescue Metals Group.
The early resumption of industrial operations in China has fueled a recovery in downstream activity and steel mills continue to increase output, China International Capital Corp. analysts including Ma Kai wrote in a note.
“Iron ore will fundamentally maintain a tight balance this year,” with supply gradually recovering from the third quarter, they said.
Benchmark spot prices are at the highest since August. Futures in Singapore were at $97, heading for their biggest ever monthly gain. On the Dalian Commodity Exchange, futures have rallied 23% in May.
Credit Suisse Group recently estimated that the market is now at “peak tightness,” a condition that will probably persist until July. Bloomberg Intelligence expects a 34-million-ton surplus in the second half on higher supply and stagnating demand, flipping from a 25-million-ton deficit in the first half. That’s throwing a spotlight on whether the price gains are sustainable.
“There remain doubts” as to the strength of the rally over the next one to three months, said Hui Heng Tan, analyst at Marex Spectron Group. A pickup in supply in Australia and Brazil is expected to gather pace, although disruptions in the South American country will be a factor to watch in the second half, he said. That increase in volumes could potentially coincide with when China exits its peak construction period with elevated steel stockpiles, he said.
Ball Mill Liner Material Selection
Different crushed material, different working conditions need different material liners to suit. Also, the coarse grinding compartment and fine grinding compartment need different material liners.
H&G Machinery supplies the following material to cast your ball mill liner:
Manganese Steel
The manganese content of the high manganese steel ball mill lining plate is generally 11-14%, and the carbon content is generally 0.90-1.50%, most of which are above 1.0%. At low impact loads, the hardness can reach HB300-400. At high impact loads, the hardness can reach HB500-800. Depending on the impact load, the depth of the hardened layer can reach 10-20mm. The hardened layer with high hardness can resist impact and reduce abrasive wear. High manganese steel has excellent anti-wear performance under the condition of strong impact abrasive wear, so it is often used in wear-resistant parts of mining, construction materials, thermal power, and other mechanical equipment. Under the conditions of low impact conditions, high manganese steel cannot exert the characteristics of the material because the work hardening effect is not obvious.
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
Mn14 Mill Liner | 0.9-1.5 | 0.3-1.0 | 11-14 | 0-2.5 | 0-0.5 | ≤0.05 | ≤0.06 | ≤0.06 |
Mn18 Mill Liner | 1.0-1.5 | 0.3-1.0 | 16-19 | 0-2.5 | 0-0.5 | ≤0.05 | ≤0.06 | ≤0.06 |
Mechanical properties and metallographic structure
Name | Surface Hardness(HB) | Impact value Ak(J/cm2) | Microstructure |
Mn14 Mill Liner | ≤240 | ≥100 | A+C |
Mn18 Mill Liner | ≤260 | ≥150 | A+C |
C -Carbide | Carbide A-Retained austenite | Austenite |
Product specification
Size | Hole Dia.(mm) | Liner Length(mm) | ||
≤40 | ≥40 | ≤250 | ≥250 | |
Tolerance | +20 | +30 | +2 | +3 |
Chrome Alloy Steel
Chromium alloy cast iron is divided into high chromium alloy cast iron (chromium content 8-26% carbon content 2.0-3.6%), medium chromium alloy cast iron (chromium content 4-6%, carbon content 2.0-3.2%), low chromium Three types of alloy cast iron (chromium content 1-3%, carbon content 2.1-3.6%). Its remarkable feature is that the microhardness of M7C3 eutectic carbide is HV1300-1800, which is distributed in the form of a broken network and isolated on the martensite (the hardest structure in the metal matrix) matrix, reducing the cleavage effect on the matrix. Therefore, the high-chromium alloy liner has high strength, ball mill toughness, and high wear resistance, and its performance represents the highest level of current metal wear-resistant materials.
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
High Chrome Alloy Liner | 2.0-3.6 | 0-1.0 | 0-2.0 | 8-26 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Middle Chrome Alloy Liner | 2.0-3.3 | 0-1.2 | 0-2.0 | 4-8 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Low Chrome Alloy Liner | 2.1-3.6 | 0-1.5 | 0-2.0 | 1-3 | 0-1.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Mechanical properties and metallographic structure
Name | Surface(HRC) Ak(J/cm2) | Microstructure | ||||
High Chrome Alloy Liner | ≥58 | ≥3.5 | M+C+A | |||
Middle Chrome Alloy Liner | ≥48 | ≥10 | M+C | |||
Low Chrome Alloy Liner | ≥45 | ≥15 | M+C+P | |||
M- Martensite | C – Carbide | A-Austenite | P-Pearlite |
Product specification
Size | Hole Dia.(mm) Liner Length(mm) | |||
≤40 | ≥40 | ≤250 | ≥250 | |
Tolerance | +20 | +30 | +2 | +3 |
Cr-Mo Alloy Steel
H&G Machinery uses Cr-Mo alloy steel to cast ball mill liner. This material based on Australia standard, (AS2074 Standard L2B, and AS2074 Standard L2C)it’s provides superior impact and wear resistance in all semi-autogenous milling applications.
Chemical Composition
Code | Chemical Elements(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
L2B | 0.6-0.9 | 0.4-0.7 | 0.6-1.0 | 1.8-2.1 | 0.2-0.4 | 0.3-0.5 | ≤0.04 | ≤0.06 |
L2C | 0.3-0.45 | 0.4-0.7 | 1.3-1.6 | 2.5-3.2 | 0.6-0.8 | 0.3-0.5 | ≤0.04 | ≤0.06 |
Physical Property & Microstructure
Code | Hardness(HB) | Ak(J/cm2) | Microstructure |
L2B | 325-375 | ≥50 | P |
L2C | 350-400 | ≥75 | M |
M-Martensite, C-Carbide, A-Austenite, P-Pearlite |
Ni-hard Steel
Ni-Hard is a white cast iron, alloyed with nickel and chromium suitable for low impact, sliding abrasion for both wet and dry applications. Ni-Hard is an extremely wear-resistant material, cast in forms and shapes which are ideal for use in abrasive and wear environments and applications.
Chemical Composition
Name | C | Si | Mn | Ni | Cr | S | P | Mo | Hardness |
Ni-Hard AS2027 Gr Ni Cr 1-550 | 3.2-3.6 | 0.3-0.8 | 0.2-0.8 | 3.0-5.0 | 1.5-3.0 | ≤0.12 | ≤0.15 | ≤0.5 | 550-600HBN |
Ni-Hard AS2027 Gr Ni Cr 2-550 | 2.8-3.2 | 0.3-0.8 | 0.2-0.8 | 3.0-5.0 | 1.5-3.0 | ≤0.12 | ≤0.15 | ≤0.5 | 500-550HBN |
Ni-Hard AS2027 Gr Ni Cr 2-550 | 3.2-3.6 | 1.5-2.2 | 0.2-0.8 | 4.0-5.5 | 8.0-10.0 | ≤0.12 | ≤0.15 | ≤0.5 | 630-670HBN |
White Iron Steel
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
White Iron Steel Liner | 2.0-3.3 | 0-0.8 | ≤2.0 | 12-26 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Physical Property & Microstructure
Name | HRC | Ak(J/cm2) | Microstructure |
White Iron Steel Liner | ≥58 | ≥3.5 | M+C+A |
M-Martensite C- Carbide A-Austenite |
If you have a special material inquiry, please contact our engineer to service you!
Nick Sun NICK@XZHUAGANG.COM
Post time: Jun-19-2020