Escondida offers early retirement amid pandemic
BHP said on Wednesday its Escondida copper mine in Chile, the world’s largest, had offered some workers the option for early retirement amid the coronavirus pandemic, a plan blasted by the company’s union as a scheme to oust the old and sick.
Escondida said in a statement to Reuters the offer would provide an “improved” package of retirement benefits to workers who met its “requirements.” The company declined to detail those stipulations.
But its powerful workers union said they were intended to entice the elderly and those with health conditions to retire early at a time when many still need to work. Government mandates have already required the most vulnerable workers be sidelined to protect their health.
“(BHP) is trying to relieve itself of the burden of holding the jobs of the sick and elderly, who beyond … retirement, will now be left unemployed,” the union said in a statement.
The union said it would closely monitor the plans to ensure they were not used as a pretext to eliminate workers during the pandemic. There are 2,372 unionized workers at the mine.
The dispute between BHP’s Escondida and its unionized workers comes as the coronavirus outbreak has exploded across much of Chile’s mine-rich northern desert. The South American nation has recorded more than 300,000 cases of the virus and upward of 6,500 deaths.
Mining Minister Baldo Prokurica has pleaded with mining companies to refrain from layoffs and protect the health of workers while maintaining output.
Escondida did not specify the number of workers it hopes will take the retirement option.
Ball Mill Liner Material Selection
Different crushed material, different working conditions need different material liners to suit. Also, the coarse grinding compartment and fine grinding compartment need different material liners.
H&G Machinery supplies the following material to cast your ball mill liner:
Manganese Steel
The manganese content of the high manganese steel ball mill lining plate is generally 11-14%, and the carbon content is generally 0.90-1.50%, most of which are above 1.0%. At low impact loads, the hardness can reach HB300-400. At high impact loads, the hardness can reach HB500-800. Depending on the impact load, the depth of the hardened layer can reach 10-20mm. The hardened layer with high hardness can resist impact and reduce abrasive wear. High manganese steel has excellent anti-wear performance under the condition of strong impact abrasive wear, so it is often used in wear-resistant parts of mining, construction materials, thermal power, and other mechanical equipment. Under the conditions of low impact conditions, high manganese steel cannot exert the characteristics of the material because the work hardening effect is not obvious.
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
Mn14 Mill Liner | 0.9-1.5 | 0.3-1.0 | 11-14 | 0-2.5 | 0-0.5 | ≤0.05 | ≤0.06 | ≤0.06 |
Mn18 Mill Liner | 1.0-1.5 | 0.3-1.0 | 16-19 | 0-2.5 | 0-0.5 | ≤0.05 | ≤0.06 | ≤0.06 |
Mechanical properties and metallographic structure
Name | Surface Hardness(HB) | Impact value Ak(J/cm2) | Microstructure |
Mn14 Mill Liner | ≤240 | ≥100 | A+C |
Mn18 Mill Liner | ≤260 | ≥150 | A+C |
C -Carbide | Carbide A-Retained austenite | Austenite |
Product specification
Size | Hole Dia.(mm) | Liner Length(mm) | ||
≤40 | ≥40 | ≤250 | ≥250 | |
Tolerance | +20 | +30 | +2 | +3 |
Chrome Alloy Steel
Chromium alloy cast iron is divided into high chromium alloy cast iron (chromium content 8-26% carbon content 2.0-3.6%), medium chromium alloy cast iron (chromium content 4-6%, carbon content 2.0-3.2%), low chromium Three types of alloy cast iron (chromium content 1-3%, carbon content 2.1-3.6%). Its remarkable feature is that the microhardness of M7C3 eutectic carbide is HV1300-1800, which is distributed in the form of a broken network and isolated on the martensite (the hardest structure in the metal matrix) matrix, reducing the cleavage effect on the matrix. Therefore, the high-chromium alloy liner has high strength, ball mill toughness, and high wear resistance, and its performance represents the highest level of current metal wear-resistant materials.
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
High Chrome Alloy Liner | 2.0-3.6 | 0-1.0 | 0-2.0 | 8-26 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Middle Chrome Alloy Liner | 2.0-3.3 | 0-1.2 | 0-2.0 | 4-8 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Low Chrome Alloy Liner | 2.1-3.6 | 0-1.5 | 0-2.0 | 1-3 | 0-1.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Mechanical properties and metallographic structure
Name | Surface(HRC) Ak(J/cm2) | Microstructure | ||||
High Chrome Alloy Liner | ≥58 | ≥3.5 | M+C+A | |||
Middle Chrome Alloy Liner | ≥48 | ≥10 | M+C | |||
Low Chrome Alloy Liner | ≥45 | ≥15 | M+C+P | |||
M- Martensite | C – Carbide | A-Austenite | P-Pearlite |
Product specification
Size | Hole Dia.(mm) Liner Length(mm) | |||
≤40 | ≥40 | ≤250 | ≥250 | |
Tolerance | +20 | +30 | +2 | +3 |
Cr-Mo Alloy Steel
Qiming Machinery uses Cr-Mo alloy steel to cast ball mill liner. This material based on Australia standard, (AS2074 Standard L2B, and AS2074 Standard L2C)it’s provides superior impact and wear resistance in all semi-autogenous milling applications.
Chemical Composition
Code | Chemical Elements(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
L2B | 0.6-0.9 | 0.4-0.7 | 0.6-1.0 | 1.8-2.1 | 0.2-0.4 | 0.3-0.5 | ≤0.04 | ≤0.06 |
L2C | 0.3-0.45 | 0.4-0.7 | 1.3-1.6 | 2.5-3.2 | 0.6-0.8 | 0.3-0.5 | ≤0.04 | ≤0.06 |
Physical Property & Microstructure
Code | Hardness(HB) | Ak(J/cm2) | Microstructure |
L2B | 325-375 | ≥50 | P |
L2C | 350-400 | ≥75 | M |
M-Martensite, C-Carbide, A-Austenite, P-Pearlite |
Ni-hard Steel
Ni-Hard is a white cast iron, alloyed with nickel and chromium suitable for low impact, sliding abrasion for both wet and dry applications. Ni-Hard is an extremely wear-resistant material, cast in forms and shapes which are ideal for use in abrasive and wear environments and applications.
Chemical Composition
Name | C | Si | Mn | Ni | Cr | S | P | Mo | Hardness |
Ni-Hard AS2027 Gr Ni Cr 1-550 | 3.2-3.6 | 0.3-0.8 | 0.2-0.8 | 3.0-5.0 | 1.5-3.0 | ≤0.12 | ≤0.15 | ≤0.5 | 550-600HBN |
Ni-Hard AS2027 Gr Ni Cr 2-550 | 2.8-3.2 | 0.3-0.8 | 0.2-0.8 | 3.0-5.0 | 1.5-3.0 | ≤0.12 | ≤0.15 | ≤0.5 | 500-550HBN |
Ni-Hard AS2027 Gr Ni Cr 2-550 | 3.2-3.6 | 1.5-2.2 | 0.2-0.8 | 4.0-5.5 | 8.0-10.0 | ≤0.12 | ≤0.15 | ≤0.5 | 630-670HBN |
White Iron Steel
Chemical Composition
Name | Chemical Composition(%) | |||||||
C | Si | Mn | Cr | Mo | Cu | P | S | |
White Iron Steel Liner | 2.0-3.3 | 0-0.8 | ≤2.0 | 12-26 | ≤3.0 | ≤1.2 | ≤0.06 | ≤0.06 |
Physical Property & Microstructure
Name | HRC | Ak(J/cm2) | Microstructure |
White Iron Steel Liner | ≥58 | ≥3.5 | M+C+A |
M-Martensite C- Carbide A-Austenite |
@Nick Sun NICK@XZHUAGANG.COM
Post time: Jul-10-2020